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1. Introduction

A feature of many ill-posed inverse problems is that the Hessian operator of the data

misfit functional is a compact operator with rapidly decaying eigenvalues. This is a

manifestation of the typically sparse observations, which are informative about a limited

number of modes of the infinite dimensional field we seek to infer. The Hessian operator

(and its finite dimensional discretization) play an important role in the analysis and

solution of the inverse problem. In particular, the spectrum of the Hessian at the

solution of the inverse problem determines the degree of ill-posedness and provides

intuition on the construction of appropriate regularization strategies. This has been

observed, analyzed, and exploited in several applications including shape optimization

[1, 2] and inverse wave propagation [3, 4, 5], to name a few.

Moreover, solution of the inverse problem by the gold standard iterative method—

Newton’s method—requires “inversion” of the Hessian at each iteration. Compactness

of the Hessian of the data misfit functional accompanied by sufficiently fast eigenvalue

decay permits a low rank approximation, which in turn facilitates rapid inversion or

preconditioning of the regularized Hessian [3, 6]. Alternatively, solution of the linear

system arising at each Newton iteration by a conjugate gradient method can be very fast

if the data misfit Hessian is compact with rapidly decaying eigenvalues and the conjugate

gradient iteration is preconditioned by the regularization operator [7]. Finally, under a

Gaussian approximation to the Bayesian solution of the inverse problem, the covariance

of the posterior probability distribution is given by the inverse of the Hessian of the

negative log likelihood function. For Gaussian data noise and model error, this Hessian

is given by an appropriately weighted Hessian of the data misfit operator, e.g., [8]. Here

again, exploiting the low-rank character of the data misfit component of the Hessian is

critical for rapidly approximating its inverse, and hence the uncertainty in the inverse

solution [4, 5, 9, 10].

In all of the cases described above, compactness of the data misfit Hessian is a

critical feature that enables fast solution of the inverse problem, scalability of solvers to

high dimensions, and estimation of uncertainty in the solution. With this motivation,

here we analyze the Hessian operator for inverse medium acoustic scattering problems,

and study its compactness. Our analysis is based on an integral equation formulation

of the Helmholtz equation, adjoint methods, and compact embeddings in Hölder and

Sobolev spaces. These tools allow us to analyze the shape Hessian in detail.

The remainder of the paper is organized as follows. Section 2 briefly derives

and formulates forward and inverse acoustic scattering problems due to bounded

inhomogeneity. We then derive the Hessian for the inverse problem in Section 3. Section

4 justifies the Hessian derivation by studying the well-posedness of the (incremental)

forward and (incremental) adjoint equations, and the regularity of their solutions. Next,

we analyze the Hessian in Hölder spaces in Section 5, and then extend the analysis to

Sobolev spaces in Section 6. In order to validate our theoretical developments, we

provide numerical examples in Section 7. Finally, the conclusions of the paper are
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presented in Section 8.

2. Forward and Inverse Medium Problems For Acoustic Scattering

In this section, we briefly discuss forward acoustic scattering problems due to bounded

inhomogeneity and the corresponding inverse problems. Since both forward and inverse

medium problems can be found elsewhere [11], our attention is to introduce necessary

notations that will be used in our later derivations and analysis starting from Section 3.

The scattering of time harmonic incident wave due to bounded inhomogeneity can

be shown to be governed by the following Helmholtz equation [11]:

∇2U + k2nU = (1− n)k2U ic, in Rd, (1a)

lim
r→∞

r(d−1)/2

(
∂U

∂r
− ikU

)
= 0, r = ‖x‖ , (1b)

where U ic is the incident wave that satisfies the Helmholtz equation ∇2U ic + kU ic = 0,

k > 0 the wave number, n > 0 the refractive index which is assumed to be 1 for the free

space, d ∈ {2, 3} the dimension of the background space, i2 = −1, and U the scattered

field. The radiation condition (1b) is assumed to be valid uniformly in all directions
x
‖x‖ with x denoting the vector of spatial coordinates. To the rest of the paper, the

inhomogeneity is assumed to be bounded, that is, there exists some sufficiently large

a > 0 such that n(x) = 1,∀ ‖x‖ > a. In other words, q = 1− n has compact support in

Rd.

For the forward problem, n is given and we solve the forward equations (1a)–(1b)

for the scattered field U . For the inverse problem, on the other hand, given observation

data U obs over some compact subset Ωobs ⊂ Rd, we are asked to infer the distribution

of the refractive index n. One way to solve the inverse problem is to cast it into the

following PDE-constrained optimization problem:

min
q
J =

∫
Rd
K(x)

∣∣U − U obs
∣∣2 dΩ, (2)

subject to the forward equations (1a)–(1b). Here, K(x) denotes the observation operator

whose support is Ωobs. In order to cover several interesting observation operators, Ωobs

is allowed to be quite general in this paper. In particular, it could be a closed subset in

Rd or a relative closed subset of a manifold in Rd. For example in R3, Ωobs could be a

closed arc, or a closed curved, or a closed subset of a two dimensional manifold, or some

two dimensional manifold. For convenience, we identify

Kϕ =

∫
Rd
KϕdΩ =

∫
Ωobs

ϕ (y) dy.

We also permit pointwise observation in our analysis, i.e., Ωobs ≡
{
xobsj

}Nobs

j=1
, and in this

case we identify

Kϕ =

∫
Rd
KϕdΩ =

Nobs∑
j=1

ϕ
(
xobsj

)
. (3)
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3. Derivation of the Hessian

In this section, we derive the gradient and Hessian using a reduced space approach,

and the justification for our derivations is provided in Section 4. We begin with a

useful observation on the radiation condition. Since the radiation condition (1b) is valid

uniformly in all directions x
‖x‖ , we rewrite the radiation condition as

∂U

∂r
− ikU = ϕ(r) = o

(
r(1−d)/2

)
,

where r is the radius of a sufficiently large circle Γ∞.

It can be seen that the cost functional (2) is real-valued while the constraints (1a)–

(1b) are complex-valued. Consequently, the usual Lagrangian approach will not make

sense and care must be taken. Following Kreutz-Delgado [12], we define the Lagrangian

as

L = J +

∫
Rd
u
[
∇2U + k2nU − k2(1− n)U ic

]
dΩ +

∫
Γ∞

ur

(
∂U

∂r
− ikU − ϕ

)
ds∫

Rd
u
[
∇2U + k2nU − k2(1− n)U

ic
]
dΩ +

∫
Γ∞

ur

(
∂U

∂r
− ikU − ϕ

)
ds,

where the overline, when acting on forward and adjoint states (and their variations),

denotes the complex conjugate.

Taking the first variation of the Lagrangian with respect to u, ur in the directions

û, ûr and arguing that the variations û, ûr are arbitrary yield the forward equations

(1a)– (1b).

Now taking the first variation of the Lagrangian with respect to U in the direction

Û and arguing that the variation Û is arbitrary yield the following adjoint equations:

∇2u+ k2nu = −K
(
U − U obs

)
, in Rd, (4a)

lim
r→∞

r(d−1)/2

(
∂u

∂r
+ iku

)
= 0, r = ‖x‖ , (4b)

and

ur = −u on Γ∞.

If we eliminate ur, the Lagrangian now becomes

L = J +

∫
Rd
u
[
∇2U + k2nU − k2(1− n)U ic

]
dΩ−

∫
Γ∞

u

(
∂U

∂r
− ikU − ϕ

)
ds∫

Rd
u
[
∇2U + k2nU − k2(1− n)U

ic
]
dΩ−

∫
Γ∞

u

(
∂U

∂r
− ikU − ϕ

)
ds. (5)

The gradient of the cost function acting in the direction n̂ is simply the variation of the

Lagrangian with respect to q in the direction n̂, i.e.,

DJ (q; n̂) = −k2

∫
Rd

[
u
(
U + U ic

)
+ u

(
U + U

ic
)]
n̂ dΩ. (6)
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For the sake of convenience in deriving the Hessian, the forward and adjoint

equations are best expressed in the weak form. As a direct consequence of the above

variational calculus steps, the forward equation in the weak form reads

S (q, U) =

∫
Rd
û
[
∇2U + k2nU − k2(1− n)U ic

]
dΩ

−
∫

Γ∞

û

(
∂U

∂r
− ikU − ϕ

)
ds = 0, ∀û. (7)

Similarly, the adjoint equation in the weak form is given by

A (q, U, u) =

∫
Rd
Û
[
∇2u+ k2nu+K

(
U − U obs

)]
dΩ

−
∫

Γ∞

Û

(
∂u

∂r
+ iku

)
ds = 0, ∀Û . (8)

Next, the (reduced) Hessian acting in the directions n̂ and ñ is obtained by simply

taking the first variation of the gradient DJ (q, n̂) with respect to q, U and u in the

directions ñ, Ũ and ũ, i.e.,

D2J (q; n̂, ñ) = −k2

∫
Rd

[
ũ
(
U + U ic

)
+ ũ

(
U + U

ic
)

+ uŨ + uŨ
]
n̂ dΩ. (9)

As mentioned at the beginning of this section, the reduced space approach is employed,

and hence the variations Ũ and ũ can not be arbitrary. In fact, they are only admissible

if the forward and adjoint equations are satisfied. As a direct consequence, the first

variations of S (q, U) and A (q, U, u) must vanish, that is, Ũ is the solution of the

following incremental forward equation:∫
Rd
û
[
∇2Ũ + k2nŨ − k2ñ

(
U + U ic

)]
dΩ

−
∫

Γ∞

û

(
∂Ũ

∂r
− ikŨ

)
ds = 0, ∀û, (10)

and ẽ is the solution of the following incremental adjoint equation:∫
Rd
Û
[
∇2ũ+ k2nũ− k2ñu+KŨ

]
dΩ

−
∫

Γ∞

Û

(
∂ũ

∂r
+ ikũ

)
ds = 0, ∀Û . (11)

Consequently, the corresponding strong form of the incremental forward equation is

∇2Ũ + k2nŨ = k2ñ
(
U + U ic

)
, in Rd, (12a)

lim
r→∞

r(d−1)/2

(
∂Ũ

∂r
− ikŨ

)
= 0, r = ‖x‖ , (12b)
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and that of the incremental adjoint equation reads

∇2ũ+ k2nũ = k2ñu−KŨ, in Rd, (13a)

lim
r→∞

r(d−1)/2

(
∂ũ

∂r
+ ikũ

)
= 0, r = ‖x‖ . (13b)

Next, we need to convert the Hessian in (9) into a form that is convenient for our later

analysis. The first step is to replace ñ by n̂ and choose û = ũ(ñ) in the incremental

forward equation (10). In the second step, we take Û = Ũ(n̂) in the incremental adjoint

equation (11). The last step is to subtract the resulting incremental forward equation

from the complex conjugate of the resulting incremental adjoint equation. After some

simple integration by parts and cancellations, we obtain∫
Rd
k2n̂ũ(ñ)

(
U + U ic

)
dΩ =

∫
Rd
k2uñŨ(n̂) dΩ−

∫
Rd
KŨ(ñ)Ũ(n̂) dΩ. (14)

Combining (9) and (14) gives the desired form of the Hessian as

D2J (q; n̂, ñ) =

∫
Rd
K
[
Ũ(ñ)Ũ(n̂) + Ũ(ñ)Ũ(n̂)

]
dΩ︸ ︷︷ ︸

H1(q;n̂,ñ)

−
{
k2

∫
Rd

[
uŨ(ñ) + uŨ(ñ)

]
n̂ dΩ + k2

∫
Rd

[
uŨ(n̂) + uŨ(n̂)

]
ñ dΩ

}
︸ ︷︷ ︸

H2(q;n̂,ñ)

. (15)

4. Regularity of the forward and adjoint solutions

In this section we are going to justify what we have done in Section 3 by studying the

well-posedness of the forward and adjoint equations, and the regularity of their solutions.

For sufficiently smooth inhomogeneity, the solutions turn out to be classical by using

an integral equation method, as we shall show.

First we introduce the following standard volume potentials (also known as Newton

potentials) [13, 11]:

w(x) = Tϕ(x) =

∫
RN

Φ(x,y)ϕ(y) dy, x ∈ Rd, (16)

where Φ is the fundamental solution of the (incremental) forward equation(s) defined as

Φ(x,y) =

{
i
4
H1

0 (x− y) N = 2
eik‖x−y‖

4π‖x−y‖ N = 3
,

or the fundamental solution of the (incremental) adjoint solution(s):

Φ(x,y) =

{
− i

4
H2

0 (x− y) N = 2
e−ik‖x−y‖

4π‖x−y‖ N = 3
.
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Next we denote Cm,α
(
Rd
)

the space of m-times differentiable functions whose mth

derivative is Hölder continuous with exponent α in Rd, and Cm,α
0

(
Rd
)

a subspace

of Cm,α
(
Rd
)

consisting of functions with compact support. The following mapping

properties of the volume potential are important in the sequel.

Lemma 1 Let ϕ ∈ C0

(
Rd
)
∩ Cm,α(Rd), where α ∈ (0, 1] and m ∈ N ∪ {0}. Then

w ∈ Cm+2,α (Ω), and ‖w‖Cm+2,α(Ω) ≤ c ‖ϕ‖Cm,α(Ω), where supp (ϕ) ⊂ Ω ⊆ Rd.

Furthermore, it holds that T is compact in Cp,β(Ω) for m+ α ≤ p+ β ≤ m+ 2 + α.

Proof. We proceed by induction. The cases m = 0, 1 are proved and discussed in

[13, 11]. Since differentiation and integration can be interchanged [13, 11], the partial

derivative in xj direction reads

Dxjw(x) =

∫
Rd
ϕ(y)DxjΦ (x,y) dΩ = −

∫
Ω

ϕ(y)DyjΦ (x,y) dy

= −
∫
∂Ω

Φ (x,y)ϕ(y)nj ds︸ ︷︷ ︸
0

+

∫
Ω

Φ (x,y)Dyjϕ(y) dy, (17)

where nj denotes the jth component of the normal vector of ∂Ω, and we have used the

fact that DxjΦ (x,y) = −DyjΦ (x,y) and ϕ(y) = 0 on ∂Ω. Since Dyjϕ(y) ∈ C0

(
Rd
)
∩

Cm−1,α
(
Rd
)
, we conclude, by the induction hypothesis, that Dxjw(x) ∈ Cm+1,α (Ω).

This implies w(x) ∈ Cm+2,α (Ω).

The second assertion is readily proved by the induction hypothesis∥∥Dxjw
∥∥
Cm+1,α(Ω)

≤ C
∥∥Dxjϕ

∥∥
Cm−1,α(Ω)

,

and the definition of Hölder norms [14, 11]. The third assertion is trivial due to the

compact embeddings in Hölder spaces [14].

In order to use Lemma 1 and the Riesz-Fredholm theory [15, 16] to study the

well-posedness of the forward and adjoint equations, we first recall the following Green

formula [11] for u ∈ C2(Ω) ∩ C(Ω)

u(x) =

∫
∂Ω

[
Φ
∂u

∂n
− u∂Φ

∂y

]
ds−

∫
Ω

Φ
(
∇2u+ k2u

)
dΩ,

where n denotes the unit outward normal vector of ∂Ω. Denote

T [q]ϕ(x) = k2

∫
Ω

Φ(x,y)q(y)ϕ(y) dy, x ∈ Ω,

and I as the identity operator. We now have the following integral representations for

the forward and the adjoint equations.

Theorem 1 Let Ω ⊆ Rd, and q, ñ ∈ Cm,α
0 (Ω), where α ∈ (0, 1] and m ∈ N ∪ {0}. In

addition, let p and β satisfy m + α ≤ p + β ≤ m + 2 + α. The forward, incremental

forward, adjoint, and incremental adjoint equations are well-posed in the sense that they

are equivalent to the following Lippmann-Schwinger-type integral equations:
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i) The forward integral equation

(I + T [q])U(x) = −T [q]U ic(x) (18)

has a unique solution U in Cp,β(Ω) and the solution depends continuously on the

data.

ii) The incremental forward integral equation

(I + T [q]) Ũ(x) = T [ñ]
(
U + U ic

)
(x) (19)

has a unique solution Ũ in Cp,β(Ω) and the solution depends continuously on the

data.

iii) The adjoint integral equation

(I + T [q])u(x) =

∫
Ωobs

Φ(x,y)K
(
U − U obs

)
(y) dy (20)

has a unique solution in Cm,α (Ω) and the solution depends continuously on the

data.

iv) The incremental adjoint integral equation

(I + T [q]) ũ(x) = T [ñ]u(x) +

∫
Ωobs

Φ(x,y)KŨ(y) dy (21)

has a unique solution in Cm,α (Ω) and the solution depends continuously on the

data.

Proof. The equivalence for the forward equation can be found in [11, 17] for the

case q ∈ C1
0(R3). The generalization to the case q ∈ Cm,α

0 (Ω) is straightforward. By the

same token, we have the equivalence for other equations. This suggests that we need to

study only the well-posedness of the integral equations.

By Lemma 1, T is compact in Cp,β(Ω), and T [q]U ic(x) ∈ Cp,β(Ω) due to

the analyticity of the incident wave U ic. The Riesz-Fredholm theory [15] therefore

applies, and the forward integral equation has a unique solution in Cp,β(Ω). Moreover,

(I + T [q])−1 is bounded, that is, the solution depends continuously on T [q]U ic(x) in

the Cp,β-norm. The proof for incremental forward solution (19) follows the same line

by observing that the right side of (19) belongs to Cp,β(Ω) from Lemma 1.

As for the adjoint equation, owing to Ωobs ∩ supp (q) = ∅ and the analyticity of

Φ(x,y), the right side of (20) is certainly a function in Cp,β(Ω) (in fact it is analytic in

Rd\supp
(
Ωobs

)
), and again the Riesz-Fredholm theory gives the desired results. Finally,

for the incremental adjoint integral equation, observe that the first term on the right

side of (21) belongs to Cp,β(Ω) and the second term is analytic on Ω. As a result, the

right hand side of equation (21) is function in Cp,β(Ω). The conclusions are now readily

verified by the Riesz-Fredholm theory.

We are now in the position to justify our derivations of gradient and Hessian in

Section 3.
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Theorem 2 Let Ω ⊂ Rd be a bounded domain. Assume that q, n̂ and ñ belong to

Cα
0 (Ω). Then, the cost functional (2) is twice continuously Fréchet differentiable; and

hence the gradient (6) and Hessian (15) are well-defined.

Proof. First, observe that we have used Gâteaux derivatives to derive the gradient

and Hessian in Section 3. Now it is evident that both DJ (q; n̂) and D2J (q; n̂, ñ) are

linear and continuous with respect to n̂ (and ñ) since U , u, Ũ , and ũ belong to C2,α (Ω)

by Theorem 1. Moreover, continuous dependence on q of U from Theorem 1 implies

the continuous dependence on q of u, Ũ , and ũ, which in turn implies the continuity of

DJ (q; n̂) and D2J (q; n̂, ñ) with respect to q. Hence, a classical result on sufficiency for

Fréchet derivative [18] ends the proof.

5. Analysis of the Hessian in Hölder spaces

In this section we study the behavior of the Hessian at a fixed refractive distribution

n, i.e., q = 1 − n ∈ Cm,α
0 (Ω). Unlike the shape Hessian which is only compact at the

optimal solution as we have analyzed in the first part of this work [19], the Hessian

of the inverse medium scattering problem turns out to be compact for all q as we

shall show. For concreteness, we restricted ourselves to two exemplary cases of the

observation operator, namely, the observation is everywhere on a compact subset Ωobs

having non-trivial r-dimensional Lesbegue measure for some 1 ≤ r ≤ d (we call this

case as continuous observation) and pointwise observation Ωobs =
{
xobsj

}Nobs

j=1
.

From Theorem 1, observe that the incremental forward solution Ũ can be identified

as the following operator composition:

Ũ : Cm,α
0 (Ω) 3 ñ 7→ Ũ(ñ) = (I + T [q])−1 T [ñ]

(
U + U ic

)
∈ Cp,β(Ω),

which is compact since it is the composition of the continuous operator (I + T [q])−1

(owing to the Riesz-Fredholm theory) and the compact operator T [ñ] (U + U ic) (due to

Lemma 1). As a result, Ũ(ñ)
∣∣∣
Ωobs

is still a compact operator since the restricting to Ωobs

is a continuous operation.

If the observation is continuous, the Gauss-Newton part of the Hessian, namely

H1(n; n̂, ñ), can be now rewritten as

H1(q; n̂, ñ) = 2R
(
Ũ(n̂), Ũ(ñ)

)
L2(Ωobs)

= 2R
(
Ũ∗Ũ(n̂), ñ

)
L2(Ωobs)

,

where the real operator R extracts the real part of its argument, and (·)∗ denotes the

adjoint operator. In this form, H1(n) is evidently compact due to the compactness of

Ũ (n̂)
∣∣∣
Ωobs

.

If, on the other hand, the observation is pointwise, then the evaluation of Ũ(ñ) at
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xobsj can be written as

Ũ(ñ)
(
xobsj

)
=
(
−k2qΦj, Ũ(ñ)

)
L2(Ω)

+
(
k2ñΦj, U + U ic

)
L2(Ω)

=
(
k2Φj

(
U + U ic

)
− Ũ∗

(
k2qΦj

)
, ñ
)
L2(Ω)

= (Ψj, ñ)L2(Ω) ,

where Φj = Φ(xobsj ,y) and Ψj = k2Φj (U + U ic) − Ũ∗ (k2qΦj). In this case, the Gauss-

Newton part H1(n; n̂, ñ) reads

H1(q; n̂, ñ) = 2R


Nobs∑

j

ΨjΨj, ñ


L2(Ω)

, n̂


L2(Ω)

,

which shows that the dimension of the range of H1(q) is at most N obs. Consequently,

H1(q) is a compact operator. We summarize the above result on the compactness

of H1(q) in the following theorem which is valid for both continuous and pointwise

observation cases.

Theorem 3 H1(q), as a continuous bilinear form on Cm,α
0

(
Rd
)
× Cm,α

0

(
Rd
)
, is a

compact operator.

The analysis of H2(q) is somewhat easier as we shall now show.

Theorem 4 H2(q), as a continuous bilinear form on Cm,α
0

(
Rd
)
× Cm,α

0

(
Rd
)
, is a

compact operator.

Proof. Rewrite H2(q; ñ, n̂) as

H2(q; ñ; n̂) = 2k2R

∫
Ω

[
uŨ(n̂)ñ+ uŨ(ñ)n̂

]
dΩ = 2k2R

(
Ũ∗ (uñ) + uŨ(ñ), n̂

)
L2(Ω)

.

We conclude that H2 (q) is compact by the following three observations. First, the

incremental forward solution Ũ can be identified as a compact operator in Cm,α
0 (Ω) as

discussed above. Second, multiplication by u ∈ Cm,α
0 (Ω) is a continuous operation (see

[19] for example). Third, the sum of two compact operators is again compact.

We close this section by observing that the full Hessian is the difference of two

compact operators, it is therefore compact as well.

6. Analysis of the Hessian in Sobolev spaces

Similar to the first part of our work [19], we shall extend the analysis in Hölder spaces

to Sobolev spaces. A result similar to that of Lemma 1 is now stated.

Lemma 2 Assume that ϕ is bounded and integrable, Ω ⊂ Rd is a bounded domain,

and supp (ϕ) ⊂ Ω. Then T defined in (16) maps Hm (Ω) continuously to Hm+2 (Ω) for

m ∈ N ∪ {0}.
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Proof. We proceed by induction. Case m = 0 has been already proved in [11].

Now assume that the assertion holds for m− 1, and we need to show that it also holds

for m. Since boundedness and integrability of ϕ enable integration and differentiation

interchange [20], (17) holds. By the induction hypothesis Dxjw (x) ∈ Hm+1 (Ω), and

this implies w (x) = Tϕ (x) ∈ Hm+2 (Ω).

By compact embeddings in Sobolev spaces [21, 22], one can see that T is compact

in Hs (Ω) for m ≤ s ≤ m + 2. This fact is used to prove the following compactness of

the Hessian in Sobolev spaces.

Theorem 5 Let q be bounded, integrable, and q ∈ Hm (Ω), where Ω is a bounded

domain, and supp (q) ⊂ Ω ⊂ Rd. Then, the Hessian, H (q) = H1 (q) − H2 (q), is a

compact operator in Hm (Ω).

Proof. The proof follows the same line as in Section 5 by using Lemma 2, and hence

omitted.

7. Numerical results

In this section, we numerically compute the eigenvalues of the shape Hessian (9)

to validate our theoretical developments in Sections 5 and 6. For the purpose of

demonstration, it is sufficient to consider two-dimensional problems for which we can

use an efficient coupled finite element and boundary integral equation approach. The

detailed description of our coupling strategy is now presented.

7.1. Forward scattering problem

We decompose the forward problem into two sub-problems, namely, the interior sub-

problem given by

∇2U in + k2nU in = (1− n)k2U ic, in Ω, (22a)

∂U in

∂n
+ ikU in = ψ, on ∂Ω, (22b)

and the exterior sub-problem given by

∇2U ex + k2nU ex = 0, in Rd \ Ω, (23a)

∂U ex

∂n
+ ikU ex = ψ, on ∂Ω, (23b)

lim
r→∞

r(d−1)/2

(
∂U ex

∂r
− ikU ex

)
= 0, (23c)

where ψ is the unknown coupling function. It is easy to show that the weak formulation

of the interior problem (22) reads∫
Ω

∇U in ·∇v dΩ−k2

∫
Ω

nU inv dΩ+ ik

∫
∂Ω

U inv ds = ik

∫
∂Ω

ψv ds−k2

∫
Ω

qU icv dΩ, (24)
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and that the boundary integral equation formulation of the exterior problem (23) reads

(I −D − ikS)U ex = −Sψ, (25)

with the representation

U ex(x) =

∫
∂Ω

U ex(y)

[
∂Φ (x,y)

∂n
+ ikΦ (x,y)

]
ds(y)−

∫
∂Ω

Φ (x,y)ψ(y) ds(y),

and with S,D as the following standard surface single and double layer potentials [11]:

Sϕ(x) = 2

∫
∂Ω

Φ(x,y)ϕ(y) ds(y), x ∈ ∂Ω,

Dϕ(x) = 2

∫
∂Ω

∂Φ(x,y)

∂n(y)
ϕ(y) ds(y), x ∈ ∂Ω.

The interior and exterior solutions are matched by satisfying the following

continuity condition at the interface ∂Ω:

U in = U ex, on ∂Ω, (26)

which, together with (22) and (23), implies the continuity in the normal derivative, i.e.,

∂U in

∂n
=
∂U ex

∂n
, on ∂Ω.

Inspired by the coupling approach in [23], we choose to use the finite element method

(FEM) for solving the interior problem (24), while we solve the exterior boundary

integral equation (25) using a Nyström method [11, 19]. Now, the nature of the coupling

is implicit, that is, in order to solve for U in and U ex, the availability of ψ is required. On

the other hand, in order to solve (26) for ψ, one has to supply U in and U ex. Moreover,

matching the finite element and Nyström methods may not be trivial since the finite

element solution is defined variationally, while the Nyström solution is pointwise in

nature. We adopt a simple decoupling approach due to Kirsch and Monk [23] in which

ψ is represented by trigonometric polynomials of order M , i.e.,

ψ =
M−1∑
j=−M

αjφj, φj = eijt, t ∈ [0, 2π].

With this representation, one can solve the interior and exterior problems independently

for each basis function ϕj. Then, the unknown coefficients αj can be solved for by

employing a Galerkin projection on (26), i.e.,∫
∂Ω

(
U in − U ex

)
φj ds = 0, j = −M, . . . ,M − 1,

where φj denotes the complex conjugate of φj.
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In this paper, we use the Nyström quadrature for all line integrals along ∂Ω. This

implies that one has to interpolate the FEM solution at the Nyström points. To avoid

this extra interpolation problem, we generate the FEM mesh such that all the mesh

vertices on ∂Ω coincide with the Nyström points. We therefore simply read off the FEM

nodal solutions for the Nyström quadrature.

Since the coupled finite element and boundary integral approach—together with

its discretization—for the adjoint, incremental forward, incremental adjoint problems

is similar, we will present only the sub-problems and the continuity condition at the

interface in the next three sub-sections.

7.2. Adjoint scattering problem

Similar to the forward scattering problem, the interior sub-problem for the adjoint

equation reads

∇2uin + k2nuin = 0, in Ω,

∂uin

∂n
+ ikuin = ψ, on ∂Ω,

while the exterior problem reads

∇2uex + k2nuex = −K
(
U − U obs

)
, in Rd \ Ω,

∂uex

∂n
+ ikuex = ψ, on ∂Ω,

lim
r→∞

r(d−1)/2

(
∂uex

∂r
+ ikuex

)
= 0.

The interior and exterior solutions are matched by satisfying the following continuity

condition at the interface ∂Ω:

uin = uex, on ∂Ω,

7.3. Incremental forward scattering problem

For the incremental forward problem, we choose the interior sub-problem as

∇2Ũ in + k2nŨ in = −ñk2
(
U + U ic

)
, in Ω,

∂Ũ in

∂n
+ ikŨ in = ψ, on ∂Ω,

and the exterior sub-problem as

∇2Ũ ex + k2nŨ ex = 0, in Rd \ Ω,

∂Ũ ex

∂n
+ ikŨ ex = ψ, on ∂Ω,

lim
r→∞

r(d−1)/2

(
∂Ũ ex

∂r
− ikŨ ex

)
= 0,
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The interior and exterior solutions are matched by satisfying the following continuity

condition at the interface ∂Ω:

Ũ in = Ũ ex, on ∂Ω,

7.4. Incremental adjoint scattering problem

Similar the the adjoint scattering problem, the interior sub-problem reads

∇2ũin + k2nũin = −ñk2u, in Ω,

∂ũin

∂n
+ ikũin = ψ, on ∂Ω,

while the exterior problem reads

∇2ũex + k2nũex = −KŨ, in Rd \ Ω,

∂ũex

∂n
+ ikũex = ψ, on ∂Ω,

lim
r→∞

r(d−1)/2

(
∂ũex

∂r
+ ikũex

)
= 0.

The interior and exterior solutions are matched by satisfying the following continuity

condition at the interface ∂Ω:

ũin = ũex, on ∂Ω,

For numerical results, a second order FEM on an unstructured triangular mesh is

used for the interior sub-problem, and a Nyström method with 240 equally distributed

(in t) points is used for the exterior sub-problem. The wave number is chosen to be

k = 10, while the number of trigonometric polynomials is 60 by taking M = 30. For

brevity, only results for pointwise observation are presented since those for continuous

observation are similar. The observational data U obs is synthesized at N obs = 31 points

equally distributed in the interval y ∈ [−10, 10] and at x = b = −10, unless otherwise

stated. For the sake of convenience, the following simple inhomogeneity [23] is used

n(r) =

{
1 + c(1− r4)2 r ≤ 1

1 r ≥ 1
, r = ‖x‖ , (27)

where c is some scalar constant, in particular, we choose c = 0.5 for the synthesization.

As a result, we can choose Ω as the unit circle. Finally, the incident wave is assumed to

be of the form U ic = eikx.

Our goal is to numerically show that the Hessian is compact for any bounded

inhomogeneity n. However, for convenience, we choose n of the form (27), and in

particular, we choose to study the discrete Hessian at various values of c. Numerically,

we are able to examine the necessary condition for the Hessian operator to be compact

(and hence the ill-posedness of the inverse problem), namely, the convergence to zero
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of the Hessian eigenvalues. However, even in this case, it is impossible to study all the

eigenvalues since they are countably infinite. We will therefore resort to investigating a

small dominant part of the spectrum, from which we draw conclusions. To the rest of the

this section, we “measure” the degree of ill-posedness by the magnitude of eigenvalues.

For example, given two ill-posed inverse problems, i.e., the Hessian eigenvalues decay to

zero, we say one problem is more ill-posed than another if the eigenvalues of the former

are smaller than those of the latter at the same indices.

A second order triangular mesh with 2738 elements and 5597 nodes is generated,

which permits us to represent the refractive index as

n =
5597∑
m=1

nmξm,

where ξm are the nodal finite element basis functions. The continuous optimization

variable n has been cast into 5597 discrete nodal unknowns nm, and hence the Hessian

is an 5597 × 5597 matrix. The real and imaginary parts of the forward and adjoint

solutions at c = 1 are shown in Figure 1.

Away from the optimal solution, i.e., at c = 0.5, the Hessian may not be

(semi-) positive definite, and for this reason, we will present only the eigenvalue

magnitudes. Figure 2 shows the first 1000 eigenvalues that are largest in magnitudes

for c = {1, 0.4, 0.499, 0.5}. As can be seen, the eigenvalues decay exponentially at the

optimal inhomogeneity, but the decay rate is rather slow otherwise. Moreover, closer

to the optimal inhomogeneity, the eigenvalue is smaller for a same index, indicating the

increasing ill-posedness of the inverse problem as the optimal solution is approached.

Note that at the optimal solution, the full Hessian collapses to the Gauss-Newton part,

i.e., H1, since H2 = 0.

Next, we keep c = 1 fixed, but allow the wave number k to change. Figure 3

shows the first 1000 eigenvalues that are largest in magnitudes for k = {10, 5, 1, 0.1}.
It can be observed, as the wave number decreases, so do the Hessian eigenvalues. This

is expected since intuitively the larger the wave number is, the easier the detection of

the inhomogeneity, and hence the problem is less ill-posed. As can also be seen, the

asymptotic decay rate seems to be similar for all cases.

We now keep c = 1 and k = 10 fixed, but let the observation radius b vary.

We present in Figure 4 the first 1000 eigenvalues that are largest in magnitudes

for b = {1, 10, 100, 10000}. As the observations are taken further away from the

inhomogeneity region, the Hessian eigenvalues are smaller. Again, for all cases, the

eigenvalues decay to zero, indicating the compactness of the Hessian operator. The result

suggests that observations should be carried out as close as possible to the inhomogeneity

for the inverse problem to be less ill-posed.

In order to study the affect of observations on the ill-posedness of the inverse

problem, we fix c = 1, k = 10, and b = −10, and let N obs points be equally distributed

in the interval y ∈ [−100, 100]. Figure 5 shows the first 1000 eigenvalues that are largest

in magnitudes for N obs = {1, 51, 101, 1001}. One can observe that as more observation
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(a) Real part of U (b) Imaginary part of U

(c) Real part of u (d) Imaginary part of u

Figure 1. Real and imaginary parts of the forward and adjoint solutions for n given

in (27) with c = 1.

Figure 2. Magnitudes of the first 1000 eigenvalues of the Hessian at

n (c = {1, 0.4, 0.499, 0.5}) given in (27).
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Figure 3. Magnitudes of the first 1000 eigenvalues of the Hessian for k = {10, 5, 1, 0.1}.

Figure 4. Magnitudes of the first 1000 eigenvalues of the Hessian for b =

{1, 10, 100, 10000}.

points are added, the inverse problem is less ill-posed since the eigenvalues increase.

That is, as more information about the inhomogeneity is available, the problem of

reconstructing it is more well-posed, agreeing with our intuition.

Finally, we study the dependence on mesh refinement of the Gauss-Newton Hessian

dominant spectrum. Figure 6 shows the first 100 dominant eigenvalues for three different

mesh sizes h = {0.1, 0.05, 0.025}. As can be observed, the dominant part of the spectrum

is numerically independent of the mesh size. This result is consistent with the numerical

results in the first part of our work [19] in which we numerically show that the Gauss-

Newton Hessian dominant spectrum is independent of the mesh size regardless of the

shape.



Hessian Analysis for Inverse Medium Acoustic Scattering 18

Figure 5. Magnitudes of the first 1000 eigenvalues of the Hessian for Nobs =

{1, 51, 101, 1001}.

Figure 6. The first 100 dominant eigenvalues of the Hessian for h = {0.1, 0.05, 0.025}
with c = 0.5.

8. Conclusions

We have analyzed the Hessian stemming from the inverse problem of scattering of

acoustic waves due to bounded inhomogeneity. Unlike our companion paper on inverse

shape scattering problems [19] for which only the Gauss-Newton Hessian is compact,

the full Hessian operator has been shown to be compact for inverse medium scattering

problems. Our analysis starts with a study on the smoothness of the scattering

solution based on the Newton potential theory and the Riesz-Fredholm framework.

Then, together with compact embeddings in Hölder and Sobolev spaces, we are able

to prove the compactness of the Hessian operator in both Hölder space and Sobolev

space settings, and for both two and three dimensions. Our theoretical results have

been validated numerically in several scenarios.
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[4] H. P. Flath, L. C. Wilcox, V. Akçelik, J. Hill, B. van Bloemen Waanders, and O. Ghattas. Fast

algorithms for Bayesian uncertainty quantification in large-scale linear inverse problems based

on low-rank partial Hessian approximations. SIAM Journal on Scientific Computing, 33(1):407–

432, 2011.

[5] Tan Bui-Thanh, Carsten Burstedde, Omar Ghattas, James Martin, Georg Stadler, and Lucas C.

Wilcox. Scalable parallel algorithms for uncertainty quantification in high dimensional inverse

problems. In preparation, 2011.

[6] S. Chaillat and G. Biros. FaIMS: A fast algorithm for the inverse medium problem with multiple

frequencies and multiple sources for the scalar Helmholtz equations. Under review, 2010.

[7] Ake Björk. Numerical methods for least squares problems. SIAM, Philadelphia, PA, 1996.

[8] Albert Tarantola. Inverse Problem Theory and Methods for Model Parameter Estimation. SIAM,

Philadelphia, PA, 2005.

[9] James Martin, Lucas C. Wilcox, Carsten Burstedde, and Omar Ghattas. A stochastic Newton

MCMC method for large scale statistical inverse problems with application to seismic inversion.

In preparation.

[10] Tan Bui-Thanh, Omar Ghattas, and David Higdon. Hessian-informed Gaussian process response

surface methods for probability density approximation. Manuscript to be submitted, 2011.

[11] David Colton and Rainer Kress. Inverse Acoustic and Electromagnetic Scattering. Applied

Mathematical Sciences, Vol. 93. Springer-Verlag, Berlin, Heidelberg, New-York, Tokyo, second

edition, 1998.

[12] Ken Kreutz-Delgado. The complex gradient operator and the CR-calculus. Technical Report

UCSD-ECE275CG-S2009v1.0, University of California, San Diego, 2009.

[13] D. Gilbarg and N.S. Trudinger. Elliptic Partial Differential Equations of Second Order. Springer-

Verlag, Berlin, second (Classics in Mathematics) edition, 2001.

[14] E. Zeidler. Nonlinear Functional Analysis and its Applications I: Fixed Point Theorems. Springer

Verlag, Berlin, Heidelberg, New-York, 1986.

[15] David Colton and Rainer Kress. Integral equation methods in scattering theory. John Wiley &

Sons, 1983.

[16] Rainer Kress. Linear Integral Equations. Springer-Verlag, Berlin, Heidelberg, New-York, Tokyo,

1989.

[17] Andreas Kirsch. An Introduction to the Mathematical Theory of Inverse Problems. Springer, 1996.
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